Question 11 - 8568
1 |: B0 f% q5 g7 l+ i) q% G/ w4 \4 h& e+ U5 q; D
Henry Hilton, CFA, is undertaking an analysis of the bicycle industry. He hypothesizes that bicycle sales (SALES) are a function of three factors: the population under 20 (POP), the level of disposable income (INCOME), and the number of dollars spent on advertising (ADV). All data are measured in millions of units. Hilton gathers data for the last 20 years. Which of the follow regression equations correctly represents Hilton’s hypothesis?
- J2 ?9 I/ m" o% l/ e0 b; i; N0 ]/ ?9 Q" U5 q5 |3 a: b
A)
: u3 {% B) Q- K i& n' P& L! w* i. ^% y; w0 `% c" y
| SALES = α x β1 POP x β2 INCOME x β3 ADV x ε. 8 c- q% e) `# B1 N4 m
! O8 }' v6 V. f& T9 U$ r | B) ; @4 ?, h J/ M& S" {
% @6 j+ [5 I( h | INCOME = α + β1 POP + β2 SALES + β3 ADV + ε.
, `5 ]" }5 ]8 n( ^0 v/ Q& F; f9 t
) _. {" ^. O; \: L1 Q4 o% [# O | C)
S [% o: y) U: @" k- T* L/ f1 z6 R- }" Z r" ~5 Q1 D
| INCOME = α + β1 POP + β2 ADV + ε.
. @& Q; w5 B: c3 c4 M* z+ E; B; f& }' V# X3 H
| D)
& \0 n. e- X5 Q! `4 V1 o3 c
. d1 y, v3 m/ }8 y: M/ t! U | SALES = α + β1 POP + β2 INCOME + β3 ADV + ε. 0 g+ z/ k% ~, `
: ]& a+ _- i# L' @& c% q6 G/ `; a% ^7 v
|
Question 12 - 23289
* Q& z* z9 J8 |# a% o6 v; V3 G" s3 g3 a0 h
The variance of the rates of return is 0.04 for stock X and 0.0144 for stock Y. The covariance between the returns of X and Y is 0.0096. The correlation of the rates of return between X and Y is: % y! ?+ C1 a0 a( Q$ \0 a" x, N
* B% U5 N$ X& o
A) 8 P& r# A4 b' l9 }' ^
3 Q; e' @0 \* Q4 i
| 0.17.
. F6 \, P3 L' {' t
) L! l( K4 m9 F* p& G h | B)
! A+ |* f& H( O! \4 y& Y( P7 M' f/ J0 o2 z1 O8 f
| 0.36.
4 d V8 W6 R+ q0 O5 g3 X, P) f" t4 l/ h8 @1 l% F3 N8 C) Y# j* j
| C) 1 W2 t' P, p3 H: [" ]
" J K8 u. D- b& t$ B
| 16.67. 0 a' Q& I t7 ?" o$ e7 i
6 ], X/ z1 x2 s
| D) ! h+ ~/ S3 j# [' C& X: g8 `. f) _4 j
. \8 \' m6 s7 q | 0.40. 9 J' n5 Q6 S+ b8 x9 }3 b9 f
3 z1 q/ c+ K$ y2 X0 T! l' \ |
Question 13 - 8587 , X% r8 T& R, T3 Z+ H
8 r' l$ w; G8 |6 XIn a regression that does not include a lagged dependent variable as an independent variable, serial correlation is a problem because: 7 ^5 Z! T6 k& n& `4 ]+ k5 X
* W/ m" R1 }4 X3 s
A)
3 C4 x) l, G- z5 r3 \
; S# T' S# G, O | the estimated coefficients are incorrect, but the standard errors are correct. ) B3 h8 r: w$ Z1 e
4 q: }. O2 u+ Y. P$ F; g3 s/ | | B) / Z: ]) P ~2 C6 j
2 Y7 D& u. y" U X" b | it makes it difficult to interpret the meaning of a slope coefficient.
n/ q; F" C9 B0 c2 n' I: ]& U) d+ m2 U
| C) 4 s% s# F( [, |# Q/ l' Q. l
) \5 z5 Z# Y& `% [8 P | it means that the estimated model is incorrect.
4 ~$ k7 H/ v/ U- i) ~
4 q9 c7 n% o) C- P$ ~0 ^ | D) / d/ q# D/ @ S' ]# X# C0 q9 L
$ I' [6 Z6 n1 `3 m# O
| the estimated coefficients are correct, but the standard errors are incorrect.
i9 n: [% Z. p' h4 a
6 P/ k+ o; V* R4 F2 Q* C |
Question 14 - 8581 , F& X8 k. l+ l/ q" N9 ]0 B
J1 ~2 I* Z9 I
Which of the following is NOT an assumption of linear regression? The: 2 h n9 U# v* n
, l' @( J" E5 `2 h* s# ?A) - u9 p6 S: f$ s* [7 K8 ?6 I1 X: Q
; O4 S4 m+ B! ]0 `; h! L | residuals are heteroskedastic.
5 u1 H1 ?9 [: O( O- n7 E0 h) }3 h5 O
| B)
& @( s! f( L1 ?# n# l5 N, L3 C
! c: H( |+ ~4 }. M6 e4 q; M | expected value of the residuals is zero.
5 ]0 q& t! O( w, D% g! i
3 z( D' H3 Q* B& ~( G/ D/ E- y | C)
0 ~" [& F* q6 ~' ?9 P7 ], K8 L9 B! S) S+ P$ ~. g
| variance of the residuals is constant. 8 D1 a H- l# f4 ?) Z: S
& k j$ H$ i Y& `) G6 k: ]
| D)
4 G5 |. s# U4 u2 T" B
) F( l9 V; P, S6 u4 p. r& m/ | | residuals are independently distributed.
. R4 X. \, C- F; l2 g9 u" ~+ q; k2 B9 C; O6 X3 M6 `# `
|
Question 15 - 27257 0 D9 H9 V& d- j. X; u
* \; h/ P+ A1 S' B; _- y
The largest component of the costs to society of safety regulations in the workplace is the: f+ p( f$ A# I6 W- U7 \9 @( I# P
* z$ w" x8 c# x0 H& ?A) * a& U2 e' E4 J0 ]% Q& Y* f( L
& U5 O( P* u) t( c& Q
| cost of safety equipment. : S0 P: I1 ~5 W8 b: N( W
& d+ z) ~: f, |8 \0 b | B) * s/ k$ \0 Z5 f
, S; C h$ Y. j% r) q4 M6 @
| increased product prices from higher operating costs.
. u, ^6 _2 w. l2 f- E- H
4 i; }7 ?# Y/ a c9 O | C) * k2 n9 B4 r+ B1 X7 o7 _* w
& W e6 \2 A! J" u
| costs of medical monitoring. , U* L. [8 h! t. o6 b' R
% X" M& ]2 n. T; z( ~0 a( z | D) ) K& o, X$ i6 E3 D
( H+ ~; }, Z5 _9 ^1 P | operating budget of OSHA and costs of worker education. | 5 _. x! n; _) T% _& `9 n) K
|